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J. Phys. A: Math. Gen. 14 (1981) L267-L268. Printed in Great Britain 

LETTER TO THE EDITOR 

On the dynamical group of the charge-monopole system 

A 0 Barut 
Department of Physics, The University of Colorado, Boulder, Colorado 80309 

Received 20 May 1980 

Abstract. The massless Poincart algebra recently discussed is a subalgebra of the dynamical 
algebra 0 ( 4 , 2 )  of the charge-monopole system. Additional generators are given and the 
interpretation of mass zero representation is elucidated. 

The dynamical PoincarC group given recently by Bacry (1981) for the charge monopole 
system is a subgroup of the more general dynamical conformal group 0(4,2). In 
addition to charge monopole quantisation, the latter also solves the problem of the 
energy spectrum and complete degeneracy of the levels (Barut and Bornzin 1971, see 
also Barut and Raczka 1977). This result is also valid for the more general dyon-dyon 
system (dyonium). The generators of 0(4,2), in addition to those of the above 
mentioned PoincarC group, consist of the dilatation operator 

D = r * . r r - i ;  .rr=p-eA, (1) 

M -t A = r r  - 2 .rr ( r  * n) + 2 p  (r x n/ r ) - 2 (CL / 2 r ’) r (2) 

r0+r4= r r 2 + p 2 / r .  (3) 

one of the combinations of the Lenz-Runge vector A and M, with M - A  = r (Bacry’s 
P), and 

(,U = e g ) ,  and one of the combinations of ro, r4 with r0 - r4 = r (Bacry’s H )  and 

The Casimir operators of the PoincarC subalgebra of 0(4,2) correspond to zero 
‘mass’ and ‘helicity’ p. Bacry does further try to give to this realisation a zero-mass 
interpretation and proposes a position operator for massless particles. However, the 
coordinates r and p here refer to relative coordinates of two particles, and there is a 
geometric reason for the occurrence of ‘mass zero’ PoincarC representations which have 
nothing to do with zero-mass particles. And there is a systematic way of deriving the 
above nonlinear realisations of the conformal group (Barut 1980). 

In the same way as one derives the usual four-dimensional (in Minkowski Space) 
nonlinear realisation of the conformal group from a linear six-dimensional represen- 
tation by restricting the coordinates to lie on a cone 77@v1* - 775776 = 0 in the 6-space 
(with coordinates qa, a = 1 , , , 6), one can go one step further, and restrict, in turn, this 
four-dimensional realisation to one in three dimensions by restricting the coordinates to 
the light cone x,xF = 0 in the Minkowski Space. This is possible, because the light cone 
is invariant under conformal transformations. In the dual momentum space we 
similarly have the light cone p @ p F  = 0. These relations allow one to replace, in the usual 
conformal generators, x o  by r, or p o  by p = 4 2 ,  and so one obtains the above 
generators. 
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The crucial relation x ,xw = 0 for the relative coordinates can be derived starting 
from a conformal two-body problem with the relative coordinates xlF - x2, = x, (Barut 
and Bornzin 1974) and physically may be connected with the fact that signals travel on 
the light cone. 

It is further important to remark that the dynamical group (0(4 ,2) ,  hence its 
PoincarC subgroup) that is needed for our problem acts in the space of the relative 
momenta, and not the relative coordinates, showing again that it is different from the 
space-time PoincarC group defining physical particles. 

The ‘canonical momenta’ do not commute 

(4) 2 
[Ti, Tj] = ip&ijk?kk/r , 

because of the contribution of the field momentum. 
Finally, all results remain valid for p = 0 and we get the well known dynamical group 

of the Coulomb problem. In this case the variables R = r commute so it is again not 
possible to interpret R as the position operator of a massless particle. 

The Casimir operator of 0 ( 4 , 2 )  is given by 

Q 2 =  -3(1-p2)  (5  ) 

because the Casimir operator of the PoincarC subgroup is zero, the right-hand side is 
also equal to the sum of squares of the remaining five generators ( M  + A), (To + r,) and 
T, as can be checked using the representation relations 

{ L A B ,  LAC) = - 741 - F 2 ) g B c ;  A , B  = 1 . .  . 6  

for the above realisation of 0 (4 ,2 ) .  
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